Molecular Orbital Theory of the Electronic Structure of Molecules. 29. The Interaction of H_{2} with Simple Lewis Acids

John B. Collins, ${ }^{\text {1a }}$ Paul v. R. Schleyer, ${ }^{* 1 a, b}$ J. Stephen Binkley, ${ }^{1 c}$
Contribution from the Departments of Chemistry, Princeton University, Princeton, New Jersey 08540, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, and the Australian National University, Canberra ACT 2600, Australia. Received October 20, 1975

Abstract

Ab initio molecular orbital theory is used to study the interaction of the weak Lewis base, H_{2}, with simple Lewis acids, $\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{BeH}^{+}, \mathrm{BH}_{2}^{+}, \mathrm{CH}_{3}{ }^{+}, \mathrm{LiH}, \mathrm{BeH}_{2}$, and BH_{3}. Geometry determinations are made by variation of all symmetryindependent degrees of freedom using both minimal (STO-3G) and extended ($4-31 \mathrm{G}$) basis sets. The influence of polarization functions and electron correlation is calculated using geometries determined with the extended basis. The most extensive calculation gives binding energies to H_{2} of 104.5 kcal for H^{+}and 43.2 kcal for $\mathrm{CH}_{3}{ }^{+}$in close agreement with experiment. Li^{+}, $\mathrm{BeH}^{+}, \mathrm{BH}_{2}{ }^{+}, \mathrm{LiH}$, and BH_{3} are predicted to have binding energies of $4.5,21.3,3.9,2.0$, and 1.7 kcal , respectively. Be H_{2} does not form a bound complex.

The simplest molecule that can function as an electron pair donor or Lewis base is H_{2}. Interaction with a vacant orbital will lead to a three-center, two-electron, donor-acceptor bond. The archetypal example is $\mathrm{H}_{3}{ }^{+}\left(\mathrm{H}^{+} \cdot \mathrm{H}_{2}\right)$ first observed in 1911 by passing charged species through orthogonal electric and magnetic fields ${ }^{2}$ and recently implicated as an intermediate in super acid media. ${ }^{3} \mathrm{LiH}_{2}{ }^{+}\left(\mathrm{Li}^{+} \cdot \mathrm{H}_{2}\right)^{4}$ and $\mathrm{BeH}_{3}{ }^{+}$ $\left(\mathrm{HBe}^{+} \cdot \mathrm{H}_{2}\right)^{5}$ have been detected by mass spectrometry. $\mathrm{CH}_{5}{ }^{+}$ $\left(\mathrm{CH}_{3}{ }^{+} \cdot \mathrm{H}_{2}\right)$ is known in the gas phase ${ }^{6}$ and has also been suggested to be involved in reactions in superacids. ${ }^{7}$ Furthermore, the intermediacy of $\mathrm{BH}_{5}\left(\mathrm{BH}_{3} \cdot \mathrm{H}_{2}\right)$ has been claimed on the basis of isotopic scrambling on deuterolysis of $\mathrm{BH}_{4}-8,9$
ln order to begin a systematic investigation of such interactions, we have carried out ab initio molecular orbital studies of complexes of H_{2} with the simple Lewis acids $\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{LiH}$, $\mathrm{BeH}^{+}, \mathrm{BeH}_{2}, \mathrm{BH}_{2}, \mathrm{BH}_{3}$, and $\mathrm{CH}_{3}{ }^{+}$. Some of the resulting species have been the subject of previous theoretical work, $\mathrm{H}_{3}{ }^{+},{ }^{10} \mathrm{LiH}_{2}{ }^{+},{ }^{11} \mathrm{BeH}_{3}{ }^{+},{ }^{12} \mathrm{CH}_{5}{ }^{+13} \mathrm{BH}_{5} .{ }^{13 f}$ Our approach has been to use several levels of sophistication in a uniform manner, including the simple technique of correlation energy estimation suggested by Moller and Plesset. ${ }^{14}$ We have chosen to examine isoelectronic pairs of Lewis acids, one positively charged and one neutral. This allows some distinction between charge transfer effects involving vacant orbitals and polarizability attraction due to ionic charge. In addition we compare the calculated equilibrium structures for AH_{4} hydrides having six valence electrons $\left(\mathrm{BeH}_{4}, \mathrm{BH}_{4}{ }^{+}\right.$, and $\left.\mathrm{CH}_{4}{ }^{2+}\right)$ with the square planar geometries which have been proposed to be the most favorable arrangements on the basis of Walsh diagrams or similar qualitative arguments. ${ }^{15}$

Methods and Results

Calculations were performed at several levels of approximation. In the first, geometries of all species were optimized (subject only to imposed symmetry constraints) according to procedures previously described ${ }^{16}$ using the unrestricted Hartree-Fock (UHF) UHF/STO-3G procedure of Hehre et al. ${ }^{17}$ At the second level, single point calculations were carried out at the geometry determined in the first step using the "split-valence" $4-3$ IG basis. ${ }^{18}$ Next, geometries were reoptimized using the UHF/4-31G method. Single point calculations on these structures were then carried out using both the $6-31 G^{*}$ basis set, ${ }^{18 c, 19}$ which contains d-type polarization functions on heavy atoms, and the $6-31 \mathrm{G}^{* *}$ basis, which is identical with $6-31 G^{*}$ plus p functions on hydrogen. Finally,
unrestricted Moller-Plesset (UMP) second-order perturbation theory ${ }^{14}$ was applied to the UHF/6-31G* and UHF/ $6-3 \mathrm{lG}{ }^{* *}$ wave functions to obtain an estimate of the correlation energy. These results are designated UMP2/6-31G* and UMP2/6-31G**, respectively.

A complete set of structures is given in Tables I and II; the corresponding total energies are given in Table III. Data for $\mathrm{H}_{2},{ }^{20} \mathrm{CH}_{3}{ }^{+},{ }^{20}$ and $\mathrm{CH}_{5}{ }^{+13 \mathrm{~d}}$ have been taken, in part, from previous papers.

Reference Molecules

H_{2}. The UHF/6-31G** energy lies 0.00231 hartree above the Hartree-Fock limit while the UMP2/6-31G** result is 0.01680 hartree above the nonrelativistic limit. ${ }^{21}$ The UMP2/ $6-31 G^{* *}$ method gives 65% of the correlation energy.
Li^{+}. The UHG/6-31G* energy is 0.00087 hartree above the Hartree-Fock limit while the UMP2/6-31G* result is 0.04345 hartree above the nonrelativistic limit. ${ }^{22}$ The UMP2/6-31G* method gives 4% of the correlation energy.

LiH. The calculated bond length for LiH is short at the UHF/STO-3G level ($R=1.510$ vs. $\left.1.595 \AA(\exp)^{23}\right)$. The error is reduced at the UHF/4-31G level but is of the opposite $\operatorname{sign}(r=1.637 \AA)$. Cade and Huo ${ }^{24}$ calculate a bond length of $1.605 \AA$ at the Hartree-Fock limit and find a total energy which is 0.00598 hartree lower than that found with the UHF/6-31G** procedure. Bender and Davidson ${ }^{25}$ find a total energy, including electron correlation, of -8.06062 hartrees which is 0.05845 lower than that found by the UMP2/6$31 \mathrm{G}^{* *}$ method. Thus, about 28% of the correlation energy is obtained using the perturbative method with the UHF/631G** procedure.
BeH_{2}. No experimental bond length for BeH_{2} is known as this is a polymeric species. ${ }^{26}$ The bond lengths calculated with the minimal and extended basis sets bracket that found by Ahlrichs and Kutzelnigg ${ }^{27}$ ($r=1.291,1.369$, and $1.344 \AA$, respectively) who used a more extensive basis. Their total energy is lower by 0.0191 hartree than the UHF/6-31G* result. The UMP2/6-31G* result is higher by 0.0493 hartree than Ahlrich's Independent Electron Pair Approximation (IEPA) calculation corresponding to 56% of the IEPA correlation energy.
BH_{3}. No bond length for BH_{3} is known as dimerization in the gas phase prevents observation of the monomer. ${ }^{28}$ The bond lengths calculated with both the minimal and extended basis sets are in agreement with the value determined by Lipscomb ${ }^{29}$

Table I. Calculated Geometries of AH_{n} Molecules and Ions (Distances in \AA, Angles in deg)

Molecule		Symmetry	Parameter	UHF/STO-3G	UHF/4-31G
H_{2}		D_{∞}	$r(\mathrm{H}-\mathrm{H})$	0.712	0.730
LiH		$C_{\infty \nu}$	$r(\mathrm{Li}-\mathrm{H})$	1.510	1.637
BeH_{2}		D_{∞}	$r(\mathrm{Be}-\mathrm{H})$	1.291	1.369
BH_{3}		$D_{3 h}$	$r(\mathrm{~B}-\mathrm{H})$	1.160	1.183
BeH^{+}		C_{∞}	$r(\mathrm{Be}-\mathrm{H})$	1.323	1.362
BH_{2}^{+}		$D_{\infty} h$	$r(\mathrm{~B}-\mathrm{H})$	1.187	1.162
$\mathrm{CH}_{3}{ }^{+}$		$D_{3} h$	$r(\mathrm{C}-\mathrm{H})$	1.120	1.076
	I	$C_{2 v}$	$r\left(\mathrm{Li}-\mathrm{H}_{\mathrm{a}}\right)$	1.510	1.683
			$r\left(\mathrm{Li}-\left(\mathrm{H}_{2}\right)\right)^{a}$	2.226	2.368
			$r\left(\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}}{ }^{\prime}\right)$	0.728	0.732
	II	C_{∞}	$r\left(\mathrm{Li}-\mathrm{H}_{\mathrm{a}}\right)$	1.510	1.635
$\mathrm{H}_{4}-\mathrm{Li} \cdots \mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{n}^{\prime}}$			$r\left(\mathrm{Li}-\mathrm{H}_{\mathrm{b}}\right)$	2.337	2.504
			$r\left(\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}}{ }^{\prime}\right)$	0.718	0.729
BeH_{4}	I	$D_{4 h}$	$r(\mathrm{Be}-\mathrm{H})$	1.288	
	II	T_{d}	$r(\mathrm{Be}-\mathrm{H})$	1.369	
	IIIa-h	$C_{2 v}$	Table II		
BH_{5}	Ia-h	C_{s}	Table II		
	II	$C_{4 V}$	$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{a}}\right)$	1.141	1.174
			$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{b}}\right)$	1.185	1.215
			$\angle \mathrm{H}_{\mathrm{a}} \mathrm{BH}_{\mathrm{b}}$	118.8	120.4
	III	$D_{3 h}$	$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{a}}\right)$	1.164	1.191
			$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{b}}\right)$	1.170	1.208
$\begin{aligned} & \mathrm{H}_{3}^{+} \\ & \left.\stackrel{+}{\mathrm{Li}} \ldots\right\|_{\mathrm{H}} ^{\mathrm{H}} \end{aligned}$		$D_{3}{ }^{\prime}$	$r(\mathrm{H}-\mathrm{H})$	0.967	0.845
		$C_{2 \nu}$	$r\left(\mathrm{Li}-\left(\mathrm{H}_{2}\right)\right)^{a}$	2.187	2.229
			$r(\mathrm{H}-\mathrm{H})$	0.738	0.736
		$C_{2 v}$	$r\left(\mathrm{Be}-\mathrm{H}_{\mathrm{a}}\right)$	1.309	1.344
BH_{4}^{+}			$r\left(\mathrm{Be}-\left(\mathrm{H}_{2}\right)\right)^{a}$	1.761	1.714
			$r\left(\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}}{ }^{\prime}\right)$	0.778 1.209	0.753
BH_{4}^{+}	I	D_{4}	$r(\mathrm{~B}-\mathrm{H})$ $r(\mathrm{~B}-\mathrm{H})$	1.209 1.265	1.202 1.299
	IIIa	$C_{2 \nu}$	$r(\mathrm{~B}-\mathrm{H})$ H a	1.177	1.161
			$r\left(\mathrm{~B}-\left(\mathrm{H}_{2}\right)\right)^{a}$	1.764	1.982
			$r\left(\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}^{\prime}}\right)$	0.761	0.747
			$\mathrm{CH}_{\mathrm{a}} \mathrm{BH}_{\mathrm{a}}$	101.7	98.9 1.161
	IIIb	$C_{2 v}$	$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{a}}\right)$ $r\left(\mathrm{~B}-\left(\mathrm{H}_{2}\right)\right)^{a}$	1.180 1.952	1.161 2.257
			$r\left(\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}}{ }^{\prime}\right)$	0.742	0.739
			$\angle \mathrm{H}_{\mathrm{a}} \mathrm{BH}_{\mathrm{a}}{ }^{\prime}$	97.9	93.5
	IIc	$C_{2 v}$	$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{a}}\right)$	1.183 1.932	$\begin{aligned} & 1.161 \\ & 2.215 \end{aligned}$
			$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{b}}\right)$	1.932 0.726	$\begin{aligned} & 2.215 \\ & 0.735 \end{aligned}$
			$\begin{aligned} & r\left(\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}}{ }^{\prime}\right) \\ & \angle \mathrm{H}_{\mathrm{a}} \mathrm{BH}_{\mathrm{a}}{ }^{\prime} \end{aligned}$	94.3	92.3
 H,	IV	$C_{2 v}$	$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{a}}\right)$	1.172	
			$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{b}}\right)$	1.231	
			$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{c}}\right)$	1.270	
			$\angle \mathrm{H}_{\mathrm{b}} \mathrm{BH}_{\mathrm{b}}{ }^{\prime}$	131.9	
		C_{S}	$r\left(\mathrm{C}-\mathrm{H}_{\mathrm{a}}\right)$	1.106	1.086
			$r\left(\mathrm{C}-\mathrm{H}_{\mathrm{b}}\right)$	1.098	1.077
			$r\left(\mathrm{C}-\mathrm{H}_{\mathrm{c}}\right)$	1.370 1.367	1.242
			$r\left(\mathrm{C}-\mathrm{H}_{\mathrm{c}}{ }^{\prime}\right)$ $r\left(\mathrm{C}-\left(\mathrm{H}_{2}\right)\right)^{a}$	1.367 1.298	1.241
			$\stackrel{\mathrm{H}_{\mathrm{b}} \mathrm{CH}^{\text {b }} \text {, }}{ }$	117.7	116.2
				37.2	40.1
			$\mathrm{LH}_{\mathrm{a}} \mathrm{CH}_{\text {b }}$	140.0	131.6
			$\angle \mathrm{H}_{\mathrm{a}} \mathrm{CH}_{\mathrm{c}}$	83.8	84.8
$\mathrm{CH}_{4}{ }^{+}$	I	T_{d}	$r(\mathrm{C}-\mathrm{H})$	1.285	
	II	$D_{4 h}$	$r(\mathrm{C}-\mathrm{H})$	1.220	

a Distance to center of H_{2} molecule.
at near Hartree-Fock accuracy (1.160, 1.183, and 1.19 \AA), respectively. Lipscomb's total energy is 0.00856 hartree below the UHF/6-31G** result. Jungen and Ahlrichs, using a somewhat less accurate basis, calculate a correlation energy of 0.1203 hartree using IEPA. ${ }^{30}$ The UMP2/6-31G** method gives 0.09806 hartree, 82% of the IEPA result.
$\mathrm{CH}_{3}{ }^{+}$. The total energy is 0.00966 hartree above that found by Millie and Berthier. ${ }^{31}$ The UMP2/6-31G** correlation energy is 78% of that found by Kutzelnigg with the IEPA approach. ${ }^{13 \mathrm{c}}$
BeH^{+}. The UHF/STO-3G value, $r=1.323 \AA$, agrees well with experiment $(r=1.312 \AA)^{23}$ but the UHF/4-31G method gives a somewhat longer bond $(r=1.362 \AA)$. The total energy is 0.01138 hartree above the Hartree-Fock limit calculated by Cade and Huo. ${ }^{32}$ The UMP2/6-31G** value is 0.05260 hartree above Brown's 38 term configuration-interaction result. ${ }^{33}$ The UMP2/6-31G** method gives 40% of Brown's correlation energy.
$\mathbf{B H}_{\mathbf{2}}{ }^{+}$. Both the UHF/STO-3G and UHF/4-31G results are in good agreement with the bond length calculated by

Table II. Geometries of BH_{5} and BeH_{4} as a Function of $\mathrm{A}-\left(\mathrm{H}_{2}\right)$ Distance (4-31G)

	Ia	Ib	Ic		Ie	If	Ig	Ih	Ii
$r\left(\mathrm{~B}-\left(\mathrm{H}_{2}\right)\right), a^{\AA}$	1.0	1.15	1.3	1.45	1.6	1.9	2.2	2.5	∞
$r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{a}}\right), \AA$	1.189	1.190	1.186	1.189	1.184	1.183	1.183	1.183	1.183
$r\left(\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}^{\prime}}\right), \AA$	0.958	0.804	0.767	0.751	0.742	0.734	0.732	0.731	0.730
$\angle \mathrm{H}_{\mathrm{a}} \mathrm{B}\left(\mathrm{H}_{2}\right)^{\text {b }}$	106.4	104.0	101.7	99.4	96.8	93.3	91.5	90.6	90.0
	IIIa	IIIb	IIIc		IIIe	IIIf	IIIg	IIIn	IIII
$r\left(\mathrm{Be}-\left(\mathrm{H}_{2}\right)\right),{ }^{a} \AA$	1.0	1.15	1.3	1.45	1.6	1.9	2.2	2.5	∞
$r\left(\mathrm{Be}-\mathrm{H}_{\mathrm{a}}\right), \AA$	1.363	1.373	1.377	1.377	1.376	1.372	1.369	1.369	1.369
$r\left(\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}}{ }^{\prime}\right), \AA$	0.867	0.769	0.751	0.744	0.740	0.735	0.732	0.731	0.730
$\underline{L \mathrm{H}_{\mathrm{a}} \mathrm{Be}\left(\mathrm{H}_{2}\right)^{\text {b }}}$	110.6	108.5	106.5	104.3	102.0	97.6	94.2	92.1	90.0

${ }^{a}$ Distance to center of $\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}}$, bond. ${ }^{b}$ Angle to bisector of $\mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{b}}$ ' bond (deg).

Jungen using an extensive basis set with the inclusion of correlation (IEPA) ${ }^{34}$ (1.187, 1.162 , and $1.174 \AA$, respectively). Jungen's total energy is 0.0018 hartree lower than the UHF/ $6-31 G^{* *}$ result and with the inclusion of correlation is 0.0158 hartree lower than the UMP2/6-31 $\mathrm{G}^{* *}$ result indicating that the latter method obtains 82% of the correlation energy.

Lewis Acid-Base Complexes

$\mathrm{H}_{3}{ }^{+} . \mathrm{H}_{3}{ }^{+}$has been known for some time to be an equilateral triangle ${ }^{10 a, 35}$ (the linear form is calculated to be 39.6 ± 0.1 $\mathrm{kcal} / \mathrm{mol}$ less stable ${ }^{10 \mathrm{~d}, 10 e}$) so only $D_{3 h}$ symmetry was considered here. The H-H distance of $0.845 \AA$ compares with $0.875 \AA^{10 \mathrm{e}}$ found with extensive configuration interaction and $0.868 \AA^{10 \mathrm{p}}$ at near Hartree-Fock accuracy. The UHF/6$31 G^{* *}$ total energy lies 0.00631 hartree above the HartreeFock limit and with the inclusion of correlation lies 0.0156 hartree above the nonrelativistic limit. The UMP2/6-31G** method thus gives 41% of the correlation energy.
$\mathrm{LiH}_{2}{ }^{+}$. An isosceles triangle arrangement has been established as the most stable structure for this species ${ }^{1 \text { Ic }}$ being ~ 4 $\mathrm{kcal} / \mathrm{mol}$ lower in energy than linear $\mathrm{LiH}_{2}{ }^{+}$. The distance from Li to the center of $\mathrm{H}_{2}(2.23 \AA)$ is in fair agreement with that found by Kutzelnigg, " ${ }^{1 e} 1.984 \AA$, and by Ruedenberg, ${ }^{\text {11a }} 2.07$ \AA, both of whom used more extensive basis sets in the geometry determination. The UHF/6-31G** energy is 0.00110 hartree above that found in the latter calculation.
LiH_{3}. A bound state of $C_{2 v}$ symmetry was found for LiH_{3}, being $2.03 \mathrm{kcal} / \mathrm{mol}$ lower in energy at the UMP2 $/ 6-31 \mathrm{G}^{* *}$ level than separated LiH and H_{2}. Linear $\mathrm{HLi}-\mathrm{H}_{2}$ is also bound but is $\sim 1 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the $C_{2 v}$ form. To our knowledge, this is the first such calculation on LiH_{3}.
$\mathrm{BeH}_{3}{ }^{+}$. The $\mathrm{C}_{2 v}$ geometry found by Ahlrichs ${ }^{12}$ was reoptimized and the expected bound state was found although at a somewhat greater separation between Be and H_{2} (1.714 vs. $1.609 \AA$). Ahlrichs found the linear form to be $\sim 10 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the $C_{2 v}$ geometry and therefore only the latter was considered here. The total energy (UHF/6-31G**) lies 0.00856 hartree above Ahlrich's value while the correlated total energy is 0.02203 hartree higher than the IEPA result. About 81% of Ahlrich's correlation energy is obtained by the perturbative method.
BeH_{4}. No structure was found using the UHF/STO-3G method that had a total energy more negative than that of BeH_{2} and H_{2} separated to infinity. Consequently, a potential energy surface scan was conducted using the UHF/4-31G level
by fixing a H_{2} molecule at various distances from BeH_{2} assuming planar, $C_{2 v}$ symmetry and optimizing all remaining geometrical parameters (Table II). Using these geometries, UHF/6-31 G* and UMP2/6-31G* calculations were performed but still no bound state was found. It should be noted that this species had been predicted to be square planar ($D_{4 h}$) by several authors. ${ }^{15}$ While this form is more stable than tetrahedral by $109.6 \mathrm{kcal} / \mathrm{mol}(\mathrm{UHF} / 4-31 \mathrm{G})$, it is calculated to be unstable to dissociation by $94.7 \mathrm{kcal} / \mathrm{mol}$ (UHF/4-31G).
$\mathrm{BH}_{4}{ }^{+}$. Several symmetries were considered for this molecule which also has been predicted to be square planar. ${ }^{15}$ Three closely related structures were found that correspond to bound states. All are of $C_{2 v}$ symmetry and consist of a slightly bent $\mathrm{BH}_{2}{ }^{+}$fragment forming a weak complex with an H_{2} molecule. Three different orientations of H_{2} (in plane, IIIa; perpendicular, IIIb; and "end on", IIIc) are very similar in energy indicating that H_{2} can easily rotate at the binding distance. "Bridge protonated" ($C_{2 v}$, IV), square planar ($D_{4 h}$ I), and tetrahedral (T_{d}, II) forms are found to be much higher in energy ($27.5,31.2$, and $196.3 \mathrm{kcal} / \mathrm{mol}$, respectively). All of the latter group are unbound relative to BH_{2}^{+}and H_{2}.
BH_{5}. No structure was found, using the UHF/4-31G method, that was lower in energy than BH_{3} and H_{2} separated to infinity. This agrees with an earlier $a b$ initio result in which the state having $D_{3 h}$ symmetry was studied. However, in view of the experimental claim that BH_{5} participates in chemical reactions ${ }^{8,9}$ and of the semiempirical (CNDO/2) calculation of its stability ${ }^{8}$ further study of the structure was warranted. By analogy to the structure of $\mathrm{CH}_{5}+13 \mathrm{~d} . \mathrm{e}$ and in cognizance of the semiempirical results, a potential energy surface scan of a C_{s} form of BH_{5} was undertaken similar to that done for BeH_{4}. Two C_{s} forms are possible, one in which H_{2} eclipses a $\mathrm{B}-\mathrm{H}$ bond and one in which H_{2} lies perpendicular to a $\mathrm{B}-\mathrm{H}$ bond. Previous calculations on $\mathrm{CH}_{5}{ }^{+}$show these forms to be nearly identical in energy and more stable than any other geometry. Consequently we have selected the first of these forms and carried out UHF/4-31G geometry optimizations over a range of fixed $\mathrm{B}-\mathrm{H}_{2}$ distances (Table II). Local $C_{3 v}$ symmetry around BH_{3} and $\mathrm{C}_{2 v}$ symmetry around $\mathrm{B}-\mathrm{H}_{2}$ was assumed. Relaxation of this condition in $\mathrm{CH}_{5}{ }^{+}$resulted in very little change and the assumption was further checked by allowing complete geometrical relaxation for one structure of $\mathrm{BH}_{5}(r$ $=1.3$), restraining only the $\mathrm{B}-\mathrm{H}_{2}$ distance. This led to an improvement in the total energy of only 0.00047 hartree. Single point UHF/6-31G* and UHF/6-31G** calculations were

Table III. Calculated Total Energies (hartrees)

Molecule		STO-3G optimized geometry		4-31G optimized geometry				
		UHF/STO-3G	UHF/4-31G	UHF/4-31G	UHF/6-31G*	UMP2/6-31G*	UHF/6-31G**	UMP2/6-31 G**
H_{2}		-1.11751	-1.12658	-1.12683	-1.12683	-1.14410	-1.13133	-1.15765
LiH		-7.863 38	-7.97516	-7.97735	-7.98087	-7.99651	-7.98133	-8.00217
BeH_{2}		-15.56135	-15.73146	-15.73501	-15.75073	-15.78833		
BH_{3}		-26.07070	-26.34845	-26.34927	-26.38997	-26.468 49	-26.39284	-26.4909
$\mathrm{Li}^{+}{ }^{3}$		-7.13545	-7.23326		-7.235 54	-7.23594		
BeH^{+}		-14.664 77	-14.830 22	-14.83068	-14.84144	-14.86369	-14.84258	-14.869 36
BH_{2}^{+}		-25.174 43	-25.43288	-25.43293	-25.470 79	-25.522 43	-25.743 38	-25.535 33
$\mathrm{CH}_{3}{ }^{+}$		-38.779 48	-39.17129	-39.175 12	-39.23063	39.32910	-39.23626	-39.35105
LiH_{3}	I	-8.984 79	-9.10385	-9.106 17	-9.109 93	-9.14337	-9.11528	-9.163 05
	II	-8.98147	-9.10230	-9.10453				
BeH_{4}	I	-16.54487		-16.70709				
	II	-16.346 72		-16.532 48				
	IIIa			-16.70734	-16.74036	16.80805		
	IIIb			-16.77345	-16.80231	-16.865 86		
	IIIc			-16.81063	-16.83644	-16.89825		
	IIId			-16.830 73	-16.85379	-16.91428		
	IIIe			-16.84171	-16.862 46	-16.92175		
	IIIf			-16.85214	-16.86973	-16.926 98		
	IIIg			-16.85705	-16.87323	-16.92926		
	IIIh			-16.85971	-16.87552	-16.93098		
BH_{5}	Ia			-27.40365	-27.45109	-27.57561	-27.46231	-27.61691
	Ib			-27.436 21	-27.48294	-27.600 39	-27.49456	-27.64193
	Ic			-27.45093	-27.49690	-27.60964	-27.50786	-27.650 42
	Id			-27.45764	-27.502 47	-27.61104	-27.51279	-27.65126
	Ie			-27.462 04	-27.50546	-27.61050	-27.51514	-27.65011
	If			-27.469 00	-27.51034	-27.61068	-27.51879	-27.64873
	Ig			-27.473 34	-27.51401	-27.61204	-27.52182	-27.649 06
	Ih			-27.47532	-27.51594	-27.61283	-27.39284	-27.49090
	II	-27.10180	-27.40271	-27.404 79				
	III	-27.082 54	-27.38462	-27.38696				
		-1.24686	-1.26286	-1.27429	-1.274 29	-1.29638	-1.29362	-1.324 12
$\mathrm{LiH}_{2}{ }^{+}$		-8.259 96	-8.364 47	-8.364 47	-8.366 11	-8.384 53	-8.373 33	-8.40070
BeH_{3}^{+}		-15.80786	$\begin{aligned} & -15.97964 \\ & -9651734 \end{aligned}$	$\begin{aligned} & -15.98058 \\ & -9651743 \end{aligned}$	-15.99750	-16.03919	-16.00601	-16.06098
BH_{4}^{+}	I	$\begin{aligned} & -26.24413 \\ & -25.97038 \end{aligned}$	$\begin{aligned} & -26.51234 \\ & -26.24790 \end{aligned}$	$\begin{aligned} & -26.51243 \\ & -26.24925 \end{aligned}$				
	II IIIa	-25.97038 -26.29570	$\begin{aligned} & -26.24790 \\ & -26.56044 \end{aligned}$	$\begin{aligned} & -26.24925 \\ & -26.56148 \end{aligned}$				
	IIIb	-26.29451	-26.56006	-26.56209	-26.60025	-26.67132	-26.608 42	-26.699 10
	IIIc	-26.292 12	-26.560 30	-26.56150				
	IV	-26.24777	-26.51643	-26.51826				
$\begin{aligned} & \mathrm{CH}_{5}{ }^{+} \\ & \mathrm{CH}_{4}{ }^{2+} \end{aligned}$		-39.91887	-40.32207	-40.32715	-40.38822	-40.534 04	-40.405 71	-40.57747
	I II	$\begin{aligned} & -38.34806 \\ & -38.59546 \end{aligned}$	$\begin{aligned} & -38.74080 \\ & -38.99254 \end{aligned}$					
	II	-38.59546	-38.992 54					

then carried out at the UHF/4-31G geometries. With the inclusion of correlation energy, estimated from the most extensive basis, a very shallow minimum is found corresponding to a binding energy of $1.70 \mathrm{kcal} / \mathrm{mol}(r=1.45 \AA)$.
$\mathrm{CH}_{5}{ }^{+}$. The Hartree-Fock UHF/6-31G** energy is 0.00439 hartree above the value recently found by Dyczmons and Kutzelnigg. ${ }^{13 \mathrm{e}}$ With the inclusion of the Moller-Plesset correlation, the energy is 0.04413 hartree above the IEPA result. The UMP2/6-31G** method gives 81% of the correlation energy found by IEPA. Kutzelnigg's geometry is in close agreement with that found previously by Hariharan et al. ${ }^{13 \mathrm{~d}}$
$\mathrm{CH}_{4}{ }^{2+}$. Since several groups have predicted that this molecule, isoelectronic with BeH_{4} and $\mathrm{BH}_{4}{ }^{+}$, should be square planar $\left(D_{4 h}\right),{ }^{15}$ a study of its structure was undertaken. While the square-planar form is found to be $158 \mathrm{kcal} / \mathrm{mol}$ (UHF/ 4-31 G) more stable than the tetrahedral form, dissociation to $\mathrm{CH}_{3}{ }^{+}$and H^{+}is exothermic by $112(\mathrm{UHF} / 4-31 \mathrm{G}) \mathrm{kcal} / \mathrm{mol}$. Consequently, no further study of this species was made.

Discussion

All charged species studied ($\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{BeH}^{+}, \mathrm{BH}_{2}{ }^{+}, \mathrm{CH}_{3}{ }^{+}$) form bound complexes with H_{2} (Table IV). However, the magnitudes of the binding energies show wide variations. A proton binds H_{2} with an energy of $104.5 \mathrm{kcal} / \mathrm{mol}$ (UMP2/ $\left.6-31 \mathrm{G}^{* *}\right)$. This, of course, is also a protonation energy and is expected to be large. ${ }^{36}$ Both this value and those for the remaining ions can be rationalized with the aid of simple per-
turbation molecular orbital theory. ${ }^{37}$ The stabilizing interaction of the filled σ orbital of H_{2} with a vacant acceptor orbital, A, of the Lewis acid (Figure 1) will be increased by lowering the energy of A . The energies $\left(6-31 \mathrm{G}^{* *}\right)$ of the lowest lying vacant orbitals of each ion ($\mathrm{H}^{+},-0.5000 ; \mathrm{Li}^{+},-0.1958 ; \mathrm{BeH}^{+}$ $-0.2838 ; \mathrm{BH}_{2}{ }^{+},-0.2355 ; \mathrm{CH}_{3}{ }^{+},-0.2803$) reflect both the nature of the vacant orbital and the electronegativity of the central atom. Lithium is less electronegative than hydrogen and therefore the vacant $\mathrm{Li}^{+} 2 s$ orbital lies higher in energy than the 1 s of H^{+}. Similarly, beryllium is more electronegative than lithium and therefore the HBe^{+}orbital is lower in energy than that of Li^{+}. Although boron is more electronegative than beryllium, the vacant orbital in $\mathrm{BH}_{2}{ }^{+}$is pure p and no longer possesses any s character. Consequently, the lowest vacant orbital of $\mathrm{BH}_{2}{ }^{+}$actually lies higher in energy than that of BeH^{+}. This effect, in addition to those arising from the magnitude of the overlap of A with the σ orbital of H_{2} and from nuclear reorganization upon complex formation, results in the unusual ordering of the binding energies: $\mathrm{BH}_{2}+<\mathrm{Li}^{+}<\mathrm{BeH}^{+}$ $<\mathrm{CH}_{3}{ }^{+}<\mathrm{H}^{+}$.

The uncharged species $\left(\mathrm{LiH}, \mathrm{BeH}_{2}, \mathrm{BH}_{3}\right)$ behave quite differently from their charged isoelectronic analogues. BeH_{2} does not form a stable complex with H_{2}. However, LiH , the only neutral species studied possessing a permanent dipole moment, forms a complex but has less than 10% of the binding energy of the isoelectronic BeH^{+}. BH_{3} binds H_{2} with only 4% of the strength of $\mathrm{CH}_{3}{ }^{+}$.

Table IV. Calculated Binding Energies, $\mathrm{AH}_{n}+\mathrm{H}_{2}(\mathrm{kcal} / \mathrm{mol})$

Molecule	STO-3G optimized geometry		4-31G optimized geometry					Expt1
	$\begin{gathered} \text { UHF/ } \\ \text { STO-3G } \end{gathered}$	$\begin{aligned} & \text { UHF/ } \\ & 4-31 G \end{aligned}$	$\begin{aligned} & \text { UHF/ } \\ & 4-31 G \end{aligned}$	$\frac{\text { UHF/ }}{6-31 G^{*}}$	$\begin{aligned} & \mathrm{UMP} 2 / \\ & 6-31 G^{*} \end{aligned}$	$\underset{6-31 G^{* *}}{\mathrm{UHF} /}$	$\begin{aligned} & \text { LMP2/ } \\ & 6-31 G^{*} \end{aligned}$	
$\mathrm{H}_{3}{ }^{+}$	81.17	85.52	92.54	92.54	95.56	101.84	104.50	99 ± 1^{a}
$\mathrm{LiH}_{2}{ }^{+}$	4.39	2.91	2.75	2.35	2.82	4.05	4.46	
BeH_{3}^{+}	16.05	14.23	14.47	18.35	19.71	20.14	21.32	
BH_{4}^{+}	2.4	0.90	1.46	1.66	3.02	2.33	3.84	
CH_{5}^{+}	13.73	15.19	15.81	19.30	38.18	23.92	43.15	$37.9 b$
LiH_{3}	2.45	1.32	1.25	1.40	1.73	1.64	2.03	
BH_{5}	0.0	0.0	0.0	0.0	0.0	0.0	1.70	

${ }^{a}$ M. T. Bowers and D. E. Ellerman, J. Am. Chem. Soc. 92,7258 (1970); J. A. Bunt, J. L. Dunn, M. J. McEwan, M. M. Sutton, A. E. Roche, and H. I. Schiff, J. Chem. Phys., 52, 6062 (1970); J. K. Kim, L. P. Theard, and W. T. Hunters, Jr., Chem. Phys. Lett., 32, 610 (1975); P. F. Fennelly, R. S. Hemsworth, H. I. Schiff, and D. K. Bohme, J. Chem. Phys., 59, 6405 (1973); (b) S.-L. Chong and J. L. Franklin, J. Am. Chem. Soc., 94,6347 (1972); M. S. B. Munson and F. H. Field, ibid., 87, 3294 (1965); W. A. Chupka and J. Berkowitz, J. Chem. Phys., 54,4256 (1971).

Figure 1. Stabilizing interaction of filled σ orbital of H_{2} with empty acceptor orbital A of Lewis acid.

The orbital interaction diagram (Figure 1) may also be used to rationalize the qualitative relationship connecting the metal- H_{2} binding distance, the $\mathrm{H}-\mathrm{H}$ bond length, and the dissociation energy (Table V). As the orbital of H_{2} and the acceptor orbital A approach one another in energy, the interaction between them increases leading to an increased binding energy and decreased metal- H_{2} binding distance. There is a concomitant withdrawal of bonding electron density from the $\mathrm{H}-\mathrm{H}$ bond which is consequently lengthened. In the scan of the potential energy hypersurface of BH_{5} (Table III), a similar relationship is observed between the fixed $\mathrm{B}-\mathrm{H}_{2}$ distance and the $\mathrm{H}-\mathrm{H}$ bond length. In this case, however, the binding energy is actually negative and becomes more so as the H_{2} molecule approaches boron more closely.

No simple picture emerges of the effect of correlation energy. One expects that correlation energy will increase with increasing number of electron pairs and also that it will depend upon the proximity of H_{2} to the binding fragment. Since this distance changes markedly one cannot draw any general conclusions from the calculated correlation energies of the bound complexes. However, in one comparison both the number of electrons and the distance from H_{2} to the heavy atom are comparable, i.e.. $\mathrm{CH}_{5}+\left(r\left(\mathrm{C}-\mathrm{H}_{2}\right)=1.17 \AA\right)$ and BH_{5} $\left(r\left(\mathrm{~B}-\mathrm{H}_{2}\right)=1.3 \AA\right)$. For $\mathrm{CH}_{5}{ }^{+}$correlation accounts for about half of the binding energy of $43 \mathrm{kcal} / \mathrm{mol}$, or $20 \mathrm{kcal} / \mathrm{mol}$. For $\mathrm{BH}_{5}(r=1.3 \AA)$ the complex is unstable toward dissociation by $10.2 \mathrm{kcal} / \mathrm{mol}$ (UHF/6-31G**). With the inclusion of correlation the complex actually becomes bound by $1.7 \mathrm{kcal} /$ mol having overcome a large Hartree-Fock repulsion. Simi-

Table V, Comparison of Binding Energies with Binding Distance and H_{2} Bond Length (4-31G)

Molecule	Dissociation energy, kcal	$r(\mathrm{H}-\mathrm{H}), \AA$	$r\left(\mathrm{~A}-\left(\mathrm{H}_{2}\right)\right), \AA$
LiH_{3}	1.25	0.732	2.368
$\mathrm{BH}_{4}+$	1.46	0.739	2.257
$\mathrm{LiH}_{2}{ }^{+}$	2.75	0.736	2.229
$\mathrm{BeH}_{3}{ }^{+}$	14.47	0.753	1.714
CH_{5}^{+}	15.81	0.851	1.166
$\mathrm{HH}_{3}{ }^{+}$	92.54	0.845	0.732

larly for $\mathrm{BeH}_{4}(r=1.3 \AA)$ the complex is unstable by 25.8 kcal at the UHF/6-31G* level but by only 21.4 with the inclusion of correlation.

The Moller-Plesset method of correlation energy estimation gives about a third of the total correlation energy when applied to the relatively limited $6 \cdot 31 \mathrm{G}^{*}$ basis, and nearly half of the correlation energy using the $6-31 \mathrm{G}^{* *}$ basis, as compared to cases in which full configuration interaction results are known. By contrast, UMP2/6-31G* gives two thirds of the energy obtained by the IEPA approach while UMP2/6-31G** obtains four fifths of the IEPA correlation. Since a polarized, "split-valence" basis set presumably describes the valence region more accurately than the core, it is likely that the influence of correlation on chemical phenomena is more accurately estimated than is the total correlation energy. Viewed in this light the low estimate of the Li^{+}correlation energy (4%) is not so disturbing since the ion has only core electrons and this region is described by a single basis function.

The very low binding energy for BH_{5} casts some doubt on the claim that this is an intermediate in protonolysis reactions. However, the results suggest that pentavalent boron is a highly likely candidate for a transition state in the exchange of hydrogen atoms.

Summary

Several conclusions may be drawn:
(1) The ability of an electron-deficient species to bind a hydrogen molecule derives almost entirely from charge polarizability and very little from the mere availability of an unoccupied valence molecular orbital. This is similar to conclusions reached when boron compounds are used to model carbonium ions. ${ }^{38}$
(2) Correlation effects in H_{2}-Lewis acid complexes become significant at distances of about $1.5 \AA$ or less.
(3) Hartree-Fock binding energies are given fairly well at the UHF/4-3IG level. The inclusion of polarization functions generally leads to a modest increase in the binding energy.
(4) BeH_{4} is not expected to exist at any temperature.
(5) $\mathrm{H}_{3}{ }^{+}, \mathrm{BeH}_{3}{ }^{+}$, and $\mathrm{CH}_{5}{ }^{+}$are the only complexes studied that are expected to be stable at ambient temperatures.
(6) $\mathrm{LiH}_{3}, \mathrm{BH}_{5}, \mathrm{LiH}_{2}{ }^{+}$, and $\mathrm{BH}_{4}{ }^{+}$should be observable only at low temperatures where the small enthalpy of association can overcome the entropy of dissociation, which is estimated to be between 25^{39} and 35^{40} eu.
(7) Finally, $D_{4 h}$ structures proposed from qualitative arguments ${ }^{15}$ for isoelectronic BeH_{4} and $\mathrm{BH}_{4}{ }^{+}$are found to dissociate into AH_{2} and H_{2}. Similarly, $\mathrm{CH}_{4}{ }^{2+}$ is unstable and dissociates to $\mathrm{CH}_{3}{ }^{+}$and H^{+}.

Note Added in Proof. Hoheisel and Kutzelnigg ${ }^{41 \mathrm{la}}$ have now studied BH_{5} extensively with and without electron correlation. The minimum energy geometry and binding energy (2.0 $\mathrm{kcal} / \mathrm{mol})$ are quite comparable to our results. The excellent agreement between the binding energies for $\mathrm{LiH}_{2}{ }^{+}(5.1)$, $\mathrm{BeH}_{3}{ }^{+}$(24.7), $\mathrm{CH}_{5}{ }^{+}$(43.0), and $\mathrm{H}_{3}{ }^{+}(107.1 \mathrm{kcal} / \mathrm{mol})$ summarized in this paper and the UMP2/6-31G** results (Table IV) should also be noted. Similar conclusions on BH_{5} have also been reached by Pepperberg, Halgren, and Lipscomb. ${ }^{4 \mathrm{lb}}$

Acknowledgment. This work was supported, in part, by U.S. National Science Foundation Grants No. GP-29078X (Princeton) and GP-9338 (Carnegie-Mellon). We thank Carnegie-Mellon and Princeton Universities for computer time.

References and Notes

(1) (a) Princeton University; (b) Present address: Institut für Organische Chemie, Universitat Erlangen-Nürnberg, D-8520 Erlangen, Germany; (c) Carne-gie-Mellon University; (d) Australian National University.
(2) (a) J. J. Thomson, Philos. Mag., 21, 225 (1911); (b) J. L. Franklin in P. Ausloos, Ed., 'Interactions between lons and Molecules'', Plenum Press, New York, N.Y., 1975, p 1 ff.
(3) G. Olah, J. Shen, and R. H. Schlosberg, J. Am. Chem. Soc., 95, 4957 (1973). This paper contains an extensive literature review.
(4) R. Clampitt and D. K. Jeffries, Nature (London), 226, 141 (1970).
(5) S. S. Brenner and S. R. Goodman, Nature (London), 235, 35 (1972).
(6) V. L. Tal'Rose and A. K. Lyubimova, Dokl. Akad. Nauk SSSR, 86, 909 (1952); see also Table IV, footnote b and ref. 2b.
(7) G. Olah, Y. Halpern, J. Shen, and Y. K. Mo, J. Am. Chem. Soc., 93, 1251 (1971).
(8) G. Olah, P. W. Westerman, Y. K. Mo, and G. Klopman, J. Am. Chem. Soc., 94, 7859 (1972).
(9) M. M. Kreevoy and J. E. C. Hutchins, J. Am. Chem. Soc., 94, 6371 (1972).
(10) (a) J. Hirschfeider, H. Eyring, and N. Rosen, J. Chem. Phys., 4, 130 (1936); (b) J. O. Hirschfelder, ibid., 6, 795 (1938); (c) H. Conroy, ibid., 40, 603 (1964); 41, 1341 (1964); 51, 3979 (1969); (d) W. Kutzelnigg, R. Ahirichs, I. Labib-Iskovder, and W. A. Bingel, Chem. Phys. Lett., 1, 447 (1967); (e) W. A. Lester, Jr., and M. Krauss, J. Chem. Phys., 44, 207 (1966); (f) G. D. Carney and R. N. Porter, ibid, 60, 4251 (1974); (g) C. W. Bauschlicher, Jr., Stephen V. O'Neil, R. K. Preston, H. F. Schaeffer, Ill, and C. F. Bender, ibid., 59, 1286 (1973); (h) J.-T. J. Huang, M. E. Schwartz, and G. V. Pfeiffer, ibid., 56, 755 (1972); (i) A. J. Duben and J. P. Lowe, ibid., 55, 4270 (1971); (j) K. Kawaoka and R. F. Borkman, ibid., 55, 4637 (1971); (k) R. F. Borkman,
ibid., 53, 3153 (1970): (1) I. G. Csizmadia, R. E. Kari, J. C. Polanyi. A. C. Roach, and M. A. Robb, ibid., 52, 6205 (1970); (m) L. Salmon and R. D. Poshusta, ibid., 59, 3497 (1973); (h) N. C. Handy, Mol. Phys., 26, 169 (1973); (o) C. T. Llaquno, S. K. Gupta, and S. M. Rothstein, Int. J. Quantum Chem., 7, 819 (1973); (p) M. E. Schwartz and L. J. Schaad, J. Chem. Phys., 47, 5325 (1967).
(11) (a) R. C. Raffenetti and K. Ruedenberg, J. Chem. Phys., 59, 5978 (1973); (b) N. K. Ray, ibid., 52, 463 (1970); (c) W. A. Lester, Jr., ibid., 53, 1511 (1970); 54, 3171 (1971); (d) R. A. White and E. F. Hayes, ibid., 57, 2985 (1972); (e) W. Kutzeinigg, V. Staemmier, and C. Hoheisel, Chem. Phys., 1, 27 (1973); (f) J. Easterfield and J. W. Linnett. Chem. Commun., 64 (1970).
(12) (a) M. Jungen and R. Ahirichs, Mol. Phys., 28, 367 (1974); (b) J. Easterfield and J. W. Linnett, Nature (London), 226, 142 (1970).
(13) (a) M. F. Guest, J. N. Murrell, and J. B. Pedley, Mol. Phys., 20, 81 (1971); (b) V. Dyczmons, V. Staemmier, and W. Kutzelnigg, Chem. Phys. Lett., 5, 361 (1970); (c) J. J. C. Mulder and J. S. Wright, ibid., 5, 445 (1970); (d) P. C. Hariharan, W. A. Lathan, and J. A. Pople, ibid., 14, 385 (1972); (e) V. Dyczmons and W. Kutzelnigg, Theor. Chim. Acta, 33, 239 (1974); (f) H. H. Michels, F. E. Harris, and J. E. Addison, Int. J. Quantum Chem. Symp., 4, 149 (1971)
(14) (a) C. Moller and M. S. Plesset, Phys. Rev., 46, 618 (1934); (b) J. S. Binkley and J. A. Pople, Int. J. Quantum Chem., 9, 229 (1975).
(15) (a) A. F. Saturno, Theor. Chim. Acta, 8, 273 (1967); (b) R. G. Pearson, J. Am. Chem. Soc., 91, 4947 (1969); (c) B. M. Gimarc, Ibid., 93, 593 (1971); Acc. Chem. Res., 7, 384 (1974); (d) R. J. Buenker and S. D. Peyerimhoff, Chem. Rev., 74, 127 (1974); (e) B. M. Deb, J. Am. Chem. Soc., 96, 2030 (1974).
(16) M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 52, 4064 (1970).
(17) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 (1969).
(18) (a) R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 54, 724 (1971); (b) W. J. Hehre and J. A. Pople, ibid., 56, 4233 (1972); (c) J. D. Dill and J. A. Pople, ibid., 62, 2921 (1975).
(19) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 28, 213 (1973).
(20) W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc., 93, 808 (1971).
(21) W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys., 32, 219 (1960)
(22) C. C. J. Roothaan and A. W. Weiss, Rev. Mod. Phys., 32, 194 (1960).
(23) G. Herzberg, "Molecular Spectra and Molecular Structure. Infrared Spectra of Diatomic Molecules", 2nd ed, Van Nostrand, New York, N. Y., 1960.
(24) P. E. Cade and W. M. Huo, J. Chem. Phys., 47, 614 (1967).
(25) C. F. Bender and E. R. Davidson, J. Phys. Chem., 70, 2675 (1966).
(26) D. A. Everest, "The Chemistry of Beryllium'", Elsevier, New York, N.Y., 1964.
(27) (a) R. Ahirichs and W. Kutzeinigg, Theor. Chim. Acta, 10, 377 (1968); (b) R. Ahirichs, ibid., 17, 339 (1970).
(28) J. H. Wilson and H. A. McGee. Jr., J. Chem. Phys., 46, 1444 (1967).
(29) J. H. Hall, Jr., D. S. Marynick, and W. N. Lipscomb, Inorg. Chem., 11, 3126 (1972).
(30) M. Jungen and R. Ahlrichs, Theor. Chim. Acta, 17, 339 (1970).
(31) P. Millie and G. Berthier, Int. J. Quantum Chem. Symp., 2, 67 (1968).
(32) P. E. Cade and W. M. Huo, Natl. Bur. Stand. (U.S.), Tech. Note, No. 438 (1967).
(33) R. E. Brown, J. Chem. Phys., 51, 2879 (1969).
(34) M. Jungen, Chem. Phys. Lett., 5, 241 (1970).
(35) (a) R. E. Christoffersen, S. Hagstrum, and F. Prosser, J. Chem. Phys., 40, 236 (1964); (b) R. E. Christoffersen, ibid., 41, 960 (1964).
(36) J. L. Franklin, J. G. Dillard, H. N. Rosenstock, J. D. Herron, K. DraxI, and F. H. Field, Nat. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 26 (1969); J. L. Beauchamp, Annu. Rev. Phys. Chem., 22, 527 (1971).
(37) (a) R. Hoffmann, Acc. Chem. Res., 4, 1 (1971); (b) W. J. Hehre, ibid., to be published.
(38) J. D. Dill, P. v. R. Schleyer, and J. A. Pople, J. Am. Chem. Soc., 97, 3402 (1975).
(39) S. L. Bennett and F. H. Field. J. Am. Chem. Soc., 94, 8669 (1972).
(40) R. C. Pierce and R. F. Porter, J. Am. Chem. Soc., 95, 3849 (1973).
(41) (a) C. Hoheisel and W. Kutzeinigg, J. Am. Chem. Soc., 97, 6970 (1975); (b) I. M. Pepperberg, T. A. Halgren, and W. N. Lipscomb, ibid, following paper in this issue

